2007 Vol. 9, No. 9 1643–1646

Palladium-Catalyzed Diastereoselective Coupling of Propargylic Oxiranes with Terminal Alkynes

Masahiro Yoshida,* Maiko Hayashi, and Kozo Shishido

Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima 770-8505, Japan

yoshida@ph.tokushima-u.ac.jp

Received January 29, 2007

ABSTRACT

A diastereoselective coupling of propargylic oxiranes with terminal alkynes has been developed with use of a palladium catalyst. The stereochemistries of the resulting 4-alkynyl-substituted 2,3-allenols have been altered depending on the palladium catalyst. An optically active anti-substituted allene was synthesized from the reaction of an enantiomerically enriched propargylic oxirane without loss of chirality.

Substituted allenes are versatile building blocks for organic synthesis because of the inherent reactivity of their axially chiral backbones.¹ In addition, many natural products containing the allenic moiety have been isolated, and most of these have axial chirality.² As a result, the synthesis of substituted allenes has been extensively studied,¹ especially the palladium-catalyzed coupling of propargylic oxiranes, which is one of the most common methods. Organozinc,³ stannane,⁴ and -boron reagents⁵ and carbon monoxide⁶ were reacted with propargylic oxiranes in the presence of pal-

ladium to furnish the corresponding 4-substituted 2,3-allenols. The diastereoselectivity of the couplings was further examined,^{4,5} and *anti*-substituted allenols were diastereoselectively produced via an *anti*-S_N2' attack of palladium on the propargylic oxiranes. During the course of our studies on the reaction of propargylic oxiranes in the presence of palladium catalysts,^{5,7} we focused on the diastereoselective coupling with terminal alkynes.⁸ Herein we describe a palladium-catalyzed coupling of propargylic oxiranes with terminal alkynes. The stereochemistries of the resulting 4-alkynyl-substituted 2,3-allenols have been altered depending on the palladium catalyst.

The initial reactions were carried out with the phenylsubstituted propargylic oxirane 1a and trimethylsilylacetylene (2a). When 1a and 2a were subjected to the reaction with

⁽¹⁾ For selected reviews, see: (a) Marshall, J. A. Chem. Rev. 2000, 100, 3163. (b) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (c) Ma, S. Acc. Chem. Res. 2003, 36, 701. (d) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2000, 39, 3590. (e) Hoffmann-Röder, A.; Krause, N. Angew. Chem., Int. Ed. 2002, 41, 2933. (f) Krause, N.; Hoffmann-Röder, A.; Canisius, J. Synthesis 2002, 1759. (g) Hoffmann-Röder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43, 1196.

^{(2) (}a) Krause, N.; Hoffmann-Röder, A. Allenic Natural Products and Pharmaceuticals. In *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; p 997. (b) Landor S. R. Naturally Occurring Allenes. In *The Chemistry of the Allenes*; Landor S. R., Ed.; Academic Press: London, UK, 1982; p 679. (c) Claesson, A. Biologically Active Allenes. In *The Chemistry of the Allenes*; Landor S. R., Ed.; Academic Press: London, UK, 1982; p 709. (d) Robinson, C. H.; Covey, D. F. Biological Formation and Reactions; In *The Chemistry of Ketenes, Allenes and Related Compounds*; Patai S., Ed.; Wiley: Chichester, UK, 1980; p 451.

⁽³⁾ Kleijn, H.; Meijer, J.; Overbeek, G. C.; Vermeer, P. Recl. Trav. Chim. Pay-Bas. 1982, 101, 97.

⁽⁴⁾ Kjellgren, J.; Sundén, H.; Szabó, K. J. J. Am. Chem. Soc. 2005, 127, 1787.

⁽⁵⁾ Yoshida, M.; Ueda, H.; Ihara, M. *Tetrahedron Lett.* 2005, 46, 6705.
(6) Knight, J. G.; Ainge, S. W.; Baxter, C. A.; Eastman T. P.; Harwood, S. J. *J. Chem. Soc.*, *Perkin Trans.* 1 2000, 3188.

⁽⁷⁾ Yoshida, M.; Morishita, Y.; Ihara, M. Tetrahedron Lett. 2005, 46,

⁽⁸⁾ It has been reported that palladium-catalyzed coupling reactions of optically active propargylic carbonates with alkynylzinc reagents afford optically active allenes in an enantiospecific manner; however, the absolute configuration of the resulting allenes has not been determined: Dixneuf, P. H.; Guyot, T.; Ness, M. D.; Roberts, S. M. Chem. Commun. 1997, 2083.

10 mol % of Pd(PPh₃)₄, 20 mol % of CuI, and Et₃N in dioxane at rt for 14 h, the *anti*- and *syn*-4-alkynyl-substituted 2,3-allenols *anti*-3aa and *syn*-3aa were produced in a 1:1.6 ratio and 76% yield (entry 1 in Table 1). The stereochemistry

Table 1. Reactions of Propargylic Oxirane 1a with Alkyne 2a

entry	ligand	base	additive	total yields (%) ^a	ratio ^b anti:syn
1^c	PPh ₃	$\mathrm{Et_{3}N}$		76	1:1.6
2^c	PPh_3	$\mathrm{Et_{2}NH}$		19 (51)	1:3
3^c	PPh_3	Bu_3N		38	1:2
4^c	PPh_3	DABCO		45	1:1.4
5^c	PPh_3	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$		72	1:2
6^d	$P(4\text{-MeOC}_6H_4)_3$	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$		52	1:2
7^e	dppf	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$		92	2.4:1
8^e	dppm	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$		71 (88)	2.6:1
9^e	dppe	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$		94	>20:1
10^e	dppp	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$		87 (91)	14:1
11^e	dppb	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$		59 (75)	4.7:1
$12^{e,f}$	dppe	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$	DMSO	70	2.3:1
$13^{e,f}$	dppe	$^{i}\mathrm{Pr}_{2}\mathrm{NEt}$	HMPA	83	2.6:1
$14^{e,f}$	dppe	$^{\it i}{\rm Pr_2NEt}$	NMP	95	3.4:1

^a The yields in parentheses are based on recovered starting material. ^b The ratios were determined by ¹H NMR integration of the methine proton signals on the hydroxy-bearing carbon. ^c 10 mol % Pd(PPh₃)₄ was used. ^d 5 mol % Pd₂(dba)₃·CHCl₃ and 40 mol % ligand were used. ^e 5 mol % Pd₂(dba)₃·CHCl₃ and 20 mol % ligand were used. ^f 5 equiv of additives were used.

of **3aa** was determined unambiguously by NOESY correlation of the vinyldihydrofuran **5aa**, which was derived from *anti-***3aa** (Scheme 1). Thus, iodine-induced cyclization⁹ of

anti-3aa stereoselectively afforded the dihydrofuran 4aa, which was further transformed to 5aa by desilylation and hydrogenation of the alkynyl moiety. Although the diaste-

reoselectivity was low, it is interesting to note that the synsubstituted allene syn-3aa was produced predominantly under these reaction conditions. Similar results were obtained when other amines were used (entries 2-5). In the presence of ⁱPr₂NEt, anti- and syn-3aa were produced in a 1:2 ratio and 72% yield (entry 5). Furthermore, it is now clear that the stereochemical course of the reaction is altered depending on the phosphine ligand used (entries 5-11). Contrary to the syn-selectivities for reactions with monodentate ligands (entries 4 and 5), anti-3aa was the predominant product in the presence of bidentate ligands (entries 6–11). High antiselectivity was observed when dppe was employed as the ligand (entry 9). Further attempts to determine the effect of additives revealed that the anti-selectivities were lowered in the presence of polar solvents such as DMSO, HMPA, and NMP (entries 12-14).

Reactions of **1a** with various substituted terminal alkynes **2b**—**f** are summarized in Table 2. The *syn*-substituted allenes

Table 2. Reactions of 1a with Various Alkynes 2b-f

				total	ratio ^b
entry	R	${\rm condition}^a$	product	yields (%)	anti : syn ^c
1	TBS 2b	A	3ab	quant	1:2.1
2		В	3ab	80	>20:1
3	OTBDPS	Α	3ac	77	1:2.5
4	} 2c	В	3ac	83	16:1
5	, —OTBDPS	A	3ad	66	1:2.0
6	₹ 2d	В	3ad	91	>20:1
7	Bu 2 e	A	3ae	66	1:2.6
8	Bu Ze	В	3ae	80	>20:1
9	, //—Ph	A	3af	83	1.4:1
10	€ 2f	В	3af	66	>20:1

^a Condition A: Reactions were carried out in the presence of 10 mol % Pd(PPh₃)₄, 20 mol % CuI and 5 equiv of ⁱPr₂NEt in dioxane at rt. Condition B: Reactions were carried out in the presence of 5 mol % Pd₂(dba)₃·CHCl₃, 20 mol % dppe, 20 mol % CuI, and 5 equiv of ⁱPr₂NEt in dioxane at rt. ^b The ratios were determined by ¹H NMR integration of the methine proton signals on the hydroxy-bearing carbon. ^c The stereochemistries of each of the products were tentatively assigned by comparison of its NMR spectrum with 3aa.

syn-3ab—ae were predominantly obtained from the reactions with 2b—e in the presence of Pd(PPh₃)₄ (condition A, entries 1, 3, 5, and 7). When the styryl-substituted alkyne 2f was used, no syn-predominance was observed (entry 9). On the other hand, high anti-selectivities were observed to give the corresponding substituted allenes anti-3ab—af when palladium-catalyzed reactions with 2b—f were carried out in the presence of dppe (condition B, entries 2, 4, 6, 8, and 10).

Table 3 shows our attempts using the propargylic oxiranes **1b**—**f** having various R substituents at the alkynyl position

1644 Org. Lett., Vol. 9, No. 9, 2007

⁽⁹⁾ Schultz-Fademrecht, C.; Zimmermann, M.; Fröhlich, R.; Hoppe. D. Synlett 2003, 1969.

Table 3. Reactions with Various Propargylic Oxiranes **1a-f** with **2a**

entry	R	product	total yields (%)	ratio ^a anti:syn
1	TBS (1b)	3ba	63	$> 20:1^b$
2	TMS(1c)	3ca	75	$8.4:1^{b}$
3	benzyl $(1d)$	3da	84	$3.4:1^c$
4	butyl ($1e$)	3ea	94	$2.1:1^{b}$
5	$H(\mathbf{1f})$	3fa	57	$1.6:1^b$

^a The ratios were determined by ¹H NMR integration of the methine proton signals on the hydroxy-bearing carbon. ^b The stereochemistry of each product was tentatively assigned by comparison of its NMR spectrum with **3aa**. ^c The stereochemistry was determined unambiguously by NOESY correlation of dihydrofuran **5da**, which was obtained from **3da** by following the same procedure as shown in Scheme 1.

with the alkyne **2a**. When these substrates were subjected to the palladium-catalyzed reactions in the presence of dppe, the corresponding coupled allenes with *anti*-geometry were selectively produced (entries 1–5). The *anti*-coupled product *anti*-**3ba** was the sole product of the reaction with the substrate **1b**, which has a TBS group (entry 1). The diastereoselectivities were lowered when the benzyl-, butyl-, and non-substituted substrates **1d**, **1e**, and **1f** were employed (entries 3–5). These results show that the diastereoselectivity is greatly influenced by the steric bulk of the substituent R.

We attempted further reactions using the enantiomerically enriched propargylic oxirane (1R,2R)-1a (Scheme 2). When

(1R,2R)-1a (91% ee) was reacted with 2a in the presence of dppe, the corresponding optically active coupled product (1R,2R)-anti-3aa was obtained in 94% yield. The enantiomeric excess was determined to be 91%, indicating that the chirality of the propargylic oxirane had been completely transferred to the axial chirality of allenes.

To examine the reactivity of alkynylmetal reagents for the coupling, we next attempted reactions of **1a** with the alkynylmetals **2g**–**j**. Alkynylzinc chloride **2g** reacted with **1a** in the presence of 5 mol % of Pd₂(dba)₃·CHCl₃, 20 mol % of dppe, and 20 mol % of CuI¹⁰ to provide the coupled

Table 4. Reactions of 1a with Alkynylmetal Reagents 2g-j

entry	alkynylmetal reagent	total yields (%) ^a	ratio ^b anti: syn
1	CIZn———TMS 2g	45 (61)	3.2:1
2	Zn + (quant.	8:1
3	CIMg———TMS 2i	81	>20:1
4	$L_i^{\dagger}[(^{i}PrO)_3B$ TMS] $^{-}$ 2j	76	>20:1

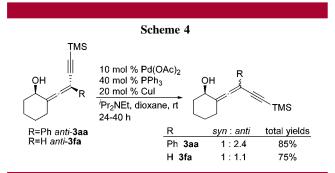
 a The yields in parentheses are based on recovered starting material. b The ratios were determined by 1 H NMR integration of the methine proton signals on the hydroxy-bearing carbon.

anti- and syn-3aa in a 3.2:1 ratio and 45% isolated yield (entry 1 in Table 4). The successful reaction with the dialkynyl reagent 2h gave 3aa in quantitative yield (anti: syn = 8:1, entry 2). The alkynylmagnesium and the alkynylboronate reagents 2i and 2j were also coupled with 1a to afford anti-3aa as the sole product in 81% and 76% yield, respectively (entries 3 and 4).

A plausible mechanism for the diastereoselectivities is shown in Scheme 3. Regio- and stereoselective anti-S_N2' attack of the palladium on the propargylic oxirane 1 takes place in the first step to yield the allenylpalladium anti-6. When a bidentate ligand is used, direct transmetallation of anti-6 with the copper acetylide proceeds to produce the antisubstituted allene anti-3 via the intermediate anti-7 in a diastereoselective manner. On the other hand, isomerization of the allenvlpalladium anti-6 to syn-6 would be caused by the presence of monodentate ligands. It has been reported that optically active allenylpalladium is racemized through the formation of the dinuclear complex. 11 We anticipated an equilibrium between the allenylpalladiums anti-6 and syn-6 via the dinuclear complex, in which the syn-6 isomer could be preferentially formed because of the interaction between the zwitterionic palladium cation and the hydroxyl anion. As a result, the reaction furnished predominantly the synsubstituted product syn-3 via the intermediate syn-7.

Another possible explanation for the appearance of *syn*-predominance is the isomerization of the resulting allenes *anti-3* to *syn-3*. It was recently reported that optically active allenes were racemized in the presence of palladium(II)/LiBr, in which the racemization proceeded via the *anti*-bromopalladation process. ¹² To examine whether a similar process occurred in the coupling reaction, we attempted the isomer-

Org. Lett., Vol. 9, No. 9, 2007


⁽¹⁰⁾ When the reactions were carried out in the absence of CuI, the yields of **3aa** dramatically decreased (<18% yields).

⁽¹¹⁾ Ogoshi, S.; Nishida, T.; Shinagawa, T.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 7164.

⁽¹²⁾ Horváth, A.; Bäckvall, J. E. Chem. Commun. 2004, 964.

Scheme 3

ization of *anti-3aa* to *syn-3aa* using a palladium catalyst (Scheme 4). When *anti-3aa* was treated with 10 mol % of

Pd(OAc)₂, 40 mol % of PPh₃, 20 mol % of CuI, and i Pr₂-NEt in dioxane at rt, the isomerized product *syn*-**3aa** was produced as a diastereomeric mixture with *anti*-**3aa**. Although the inversion of the stereochemistry from *anti* to *syn* was not observed (*syn*:*anti* = 1:2.4), the ratio shifted to *syn*: anti = 1:1.1 when anti-**3fa** was subjected to the reaction. These results indicated that partical isomerization of *anti*-**3** to *syn*-**3** occurred during the reacion. 13,14 As the reasons for

the lowered *anti*-selectivities in the presence of polar solvents (entries 12–14 in Table 1) or in the case of substrates having small R groups (entries 3–5 in Table 3), it is presumed that the isomerization of the allenylpalladium *anti*-6 or the alkynylallene *anti*-3 was accelerated under these reaction conditions.

In summary, the studies described above have resulted in the diastereoselective synthesis of 4-alkynyl-substituted 2,3-allenols by a palladium-catalyzed coupling between propargylic oxiranes and terminal alkynes. The stereoselectivity of the reaction can be altered by the choice of phosphine ligand. It is noteworthy that *syn*-substituted allenes were predominantly produced by the palladium-catalyzed couplings although the diastereoselectivities were low.

Acknowledgment. This study was supported in part by a Grant-in-Aid for the Encouragement for Young Scientists (B) from the Japan Society for the Promotion of Science (JSPS) and the Takeda Science Foundation.

Supporting Information Available: Starting material preparations, spectral data, and copies of ¹H and ¹³C NMR spectra of all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL070224N

1646 Org. Lett., Vol. 9, No. 9, 2007

⁽¹³⁾ When Pd(PPh₃)₄ was used instead of Pd(OAc)₂ and PPh₃ as the palladium catalyst, the production of *synt*-3aa was decreased (*synt*-3aa:*anti*-3aa = 1:6.5, 91% total yields). The result implies that the palladium(II) species which is partly generated in situ during the coupling process causes the isomerization of the resulting allenes.

⁽¹⁴⁾ Recently, Molander et al. reported the racemization of chiral alkenylallenes in the palladium-catalyzed coupling of propargylic phosphates with alkenyl trifluoroborates: Molander, G. A.; Sommers, E. M.; Baker. S. R. *J. Org. Chem.* **2006**, *71*, 1563.